
AII alternative in the differential-dtfference game of approach -evasion 943 

4. Osipov, Iu. S., A differential guidance game for systems with aftereffect. PMM 
Vol. 35, E 1, 1971. 

5. Kurzhanskii, A. B., Differential approach games in systems with lag. Differ- 
ents, Uravn., vol. 7, Ng 8, 1971. 

6. Subbotin, A. I., Extremal strategies in differential games with complete memo- 
ry. Dokl. Akad. Nauk SSSR, Vol. 206, Ng 3, 1972. 

Translated by N. H. C. 

UDC 62-50 

ON A DIFFERENTIAL-DXPFEMNCE GAME OF ESCAPE 

PMM Vol.40, Nz 6, 1976, pp. 995-1002 
A, A. CHIKFUI and G. Ts. CHIKBII 

(Kiev) 
(Received November 10, 1975) 

A nonlinear escape problem for conflict-controlled systems described by differ- 
ential equations with a lagging argument is considered, The sufficient escape 
conditions which are realized in the class of piecewise-constant functions are 
obtained. The paper relates to the researches in El - SJ and is a continuation 
of [9, 101. 

1. Let a system’s motion be described by the differential equation 

5’ (t) = f (z (t), 2 (t - z), u, v), El E u. u E v Cl. 1) 

Here z is the ~-dime~ional phase vector, u and u are the control parameters of the 
first and second players, U and V are closed bounded sets. The function f (z, x7, LC, 
v) is continuous in all arguments and is continuously differentiable in II: and x,, T > 0 

is the magnitude of the lag. A terminal set fif, which is subspace, is delineated in the 
space E” . The game terminates if 5 (t) hits onto set M. As the initial state for the 
game (1.1) we can take any absolutely contours function g (t) given in the interval 

[- ‘t, OJ. In what follows we assume that derivatives of ali the orders needed are pre- 
Dent ~1 the functions g (t) used as the intial functions; these derivatives and the func- 
tions themselves satisfy in the interval [- z, 01 a Lipschitz condition with a constant 
not exceeding a specified number C. 

The vector z (t) moves under the action of the measurable functions u (t) and v (tf; 
the conditions. ensuring the con~nu~i~~ of the solution z (t) onto the whole semi- 
infinite time interval are assumed satisfied. At each instant t the players know the 
game’s state 5t (s) = 5 (t + s), - z < s < 0. This restricts the information avail- 
able to the second player from whose position the game is analyzed. We also assume 
that from the function x (t) specified in some time interval,the escaping can instantly 
compute its derivatives of all orders needed at any point of the interval. 

Let us describe how the game proceeds. From the known current state X (e) (a dot 
within the parentheses means that the function: x (t) on the whole,is being treJed as 
an element of a functional space) the second nlaver determines a number e (x (a)) > 
0, selects a control v (t) = u (x(a); t), 0 < t < e (z (-)) , and informs his oppo- 
nent. On the basis of the information received the iirst player sets his own control U ft) 
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in the interval [O, E (z (-))I. The trajectory z (t) corresponds to the pair of controls 
selected. The second player’s task is to keep the trajectory z (t) from making contact 
with set M in the whole interval 10, oo) for any initial function g (t), g (0) c &I, 
satisfying the conditions stipulated earlier. If this task is feasible, then we say that escape 
is possible in game (1. 1). 

2. By L we denote the orthogonal complement to subspace &f in E” and we assume 
that dim L = v > 2. Let rc be the orthogonal projection operator from J!? onto L. 
When an initial function g (t) is given in the interval I-- ‘t, 01 the trajectory J: (t) 

satisfies the ordinary differential equation 

5’ = h (5, t, u, V) (2.1) 

h (5, 4 u, 4 = f (xc, g (t - r), u, 4 

in the interval 10, ~1 . We assume the function f (2, x~:,, U, v) has derivatives of all 

the orders needed with respect to x and x7. By Q, cp (x, E) we denote the Jacobi mat- 
rix for the function C@ (x, E) which is differentiable in 5, consisting of the first deriva- 
tives of the function with respect to 2 ; we use the recurrence relation 

‘p(i) (x, t, u, v) = Q,@-1) (x, 2, u, u) h (x, t, u, u) + acp(‘-1) (2, t, u, v) 

at 
(2.2) 

q(O) (x, t, u, u) = lxx, t E IO, 21 

to form a sequence of functions. As follows from (2.2) the functions cp@ (5, t, u, u) 
depend upon the initial function g (t) and its derivatives up to order i - 1 . Tostress 

this dependency,we denote yi = yi (t) = (g (t - T), g(l) (t -T),. . a9 g”-” (t - 
T)) and set 

q(i) (5, t, u, U) = fi (2, yiy u, v), i = 1, 2, . . . 

We denote 1 = {‘I,. . ., n} and by Ii we denote the collection of indices j E I 

for which the function qCi) (x, t, u, u) depends upon Xi, i = 0, 1,. . . . We take 

system (1.1) to be such that the functions cp @I (x, t, U, V) do not depend upon Xj (t - 

7) for 
iEI\ 6 1, 

?7l=O 

Assumption 1. A number k, k < v - 1 exists such that the sets f (x:, yi, ,t~, 

v), i -= 1,. . - , k - 1 consist of unique points. 

We set yk = y, f’ (X, yiy U, U) = fi (x, yi), i = 1, . . . , k - 1 and for some 

subspace R of L we denote 
YE = {p: p E R. iIn(( = I} 

Assumption 2. The function fk (LX, Y, % u, depends upon u ; there exists a sub- 
space R c L and a function 1 (5, Y) continuous in all its arguments,such that 

F(z, y) = min max min (p, fk (x, y, u, u) - Z(z, y))> 0 
PEyR UEV UEIi 

for all y and x E Al, and 

dim R > max rank B (x, y) (2.3) 
x, Y 
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Theorem. If Assumptions 1 and 2 are satisfied, then an escape, realized in the class 
of piecewise-constant functions v (t) , is possible in the differential-difference game 

(1.1). 

3. To prove the theorem we consider the many-valued mapping 

67 (Y) = {x: F (2, Y) > 0) 

By Assumption 2, S (y) # 0 f or any y. In addition, the mapping S (y) is closed 
and, because function F (x, y) is continuous, any point x E M belongs to int S (y). 
Let an initial function g,, (t), - ‘r < t < 0 be given, and 

go (0) E M, go (0) E int S (ye), y” = (go (- z), go(l) (-- 49 . . ., 
gy’ (- z)) 

We fix an element u0 of V, satisfying the condition 

2; m&(Po, fk(go (O), YO, u, v) = 2: (PO, fk(g,(0), y”, u, ug)) (3. I) 

where vector p. belongs to ‘Yn and satisfies the system of linear inequalities 

(PO, go (0)) > 09 (PO, I (go (O), Y”)) > 0, 0, fi (go (O), yi”)) > 0 (3.2) 
i = 1, . . . k - 1 

Because of (2.3) system (3.2) is solvable relative to po. Since g, (0) E int S (y”), 

then F (go (0), y”) > 0 and all the more 

mjn (PO, jk (go (O), go, % VO) - 1 h!0 6% Y”)) > 0 
UE CJ 

We select a neighborhood of the point (go (0), y”) of radius r so small that the ine- 

quality 
min (PO, fk (T Y9 u, vo) - 2 (go, (O), y”)) > 0 UEU (3.3) 

is satisfied by continuity. We fix a neighborhood of radius r / 2 for each of the points 

go (0) and goci) (- T), i = 1, . . . , k - 1 . 
From the assumptions on the sets CJ and V and on the function f (x, x7, U, 0) the 

use of Gronwall’s lemma [ll] yields the existence of tr, 0 < t, < z, such that the 

trajectory of system (2. &starting at the point go (0) with arbitrary measurable con- 
trol u (t) and with v (t) = VO, does not leave the neighborhood of radius r / 2 of 

point go (0) during time t,. Further,since the function g, (t) together with its deri- 

vatives satisfy a Lipschitz condition with constant c in the interval ., I-z, 0] , they 

lie in neighborhoods of radius T / 2 of the points go (- z) and g$ (- r), i = 1, 
. . ., k - 1 in the interval I- ‘G, r/2C - ~1 . We set E (go (e)) = min {tit 

r/2C} and we select the escape control as foltows: u (go (.), t) = vo, 0 < t < 
E (go (m)). Then with an arbitrary measurable function u (t) we obtain trajectory x (t) 

by intergrating system (2.1) in the interval [0, a (go (.))I . 
Let an initaial function go (t), - 7 < t < 0 be given such that go(O)E irits (!!“)a 
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We select a neighborhood of radius F of point g, (0) so that it does not intersect set 
M. Then t s > 0 exists such that the trajectory ot system (2, l), starting at point go (0) 
with arbitrary measurable controls u (t) E U and u ft) E V, does not leave the neign- 

borhood of radius r- of point go (0) during time t,. We set e (go (a)) = t, and the 

escape control u (g, (.), t ) = v,,, 0 .< t 6 E (g, (.)), where u0 E V but does 
not necessarily satisfy (3, I}. 

Using the stationarity of Eq.( 1.1) at the instant 8 > 0, we can take g (S) -= te (S), 
- r < s -< 0 as the initial function. From the a~umptio~ on system (1.1) it follows 
that in the interval [-r ,OJ the function g (s) together with its derivatives satisfies a 
Lipschitz condition with a constant depending on the right-hand side of (1.1) and onsets 

U and V. Thus, the escape control can be constructed by the method described above. 

Let us consider the projection, onto the direction of ps, of the obtained trajectory 

J: (Q, 0 < t 4 n (gll (*)A corresponding to the initial function go (9, go (0) fz 

int S (y”) 3 and to the controls selected. Using the ~rmutability of the operations 
of projection and differentiation, in accord with Assumption 1 and Taylor’s formula CC?] 
we obtain k-l 

(Pot x(f)> = (PO, go@)) + C&O, fi(go(% yi")) + (3.4) 
i-1 

In itS own turn the projection of the remainder term onto the direction of p0 can be re- 
presented in the form f 

s 
(3.5) 

0 

& (pot z (go (Oh !I”)) 

From formula (3.4), with due regard to (3,5), (3.2) and (3.3), follows 

(PO, 5 (t)) > 0, 0 < t < E (go (*)I (3.6) 

We denote the graph of the many-valued mapping ,,$ (y) by 

graph S = &G 9). 5 E s(Y)) 

Let us show that for any state g ( * ) such that the pair (g (0). y") E 2, where Z issome 
compacturn from the set graph S, we can select the quantity E (g (.)) > eZ > 0, 
where the constant EZ depends only on set 2. By Assumption 2 

(z Vrr&r,s, F ($7 Y) = A > 0 

Here 6 is an arbitrary positive number which is fixed in what follows and Q is the unit 
sphere. We consider the function 

4 (p, 1, y, u, 4 = (P, f” b:, Y1 UY 4 - 1 66 YN 

It is uniformly continuous in all its arguments on the set YE X (2 + 6Q) X u X V- 
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Consequently, r) = TJ (A) > 0, 9 < 6 exists such that in a neighborhood of any point 
(zor 8) E Z of radius not less than q the function 

$g (PO, P fG Yt % a - 2 hot $,I”)) 

where PO and Us are computed with respect to point (x0, y”) by the relations (3.1) and 
(3.2), remains nonnegative. Since x (t) and y (t) are absolutely continuous functions, 
the function z (t) = {z (t), y (t)) satisfies in the region 2 + 652 a Lipschitz condi- 
tion with a constant K depending on the set 2 + ds2. Then the function z (t), start- 
ing from any initial point 2 0 = (zs, y,) E 2, does not leave the region 2 + 69 
during time q / K and, consequently, we can choose 

a&(.))= E(z)>hhlK>O 

for all z E 2. From the method of constructing the escape strategy and from the result 
obtained it follows that E (2) > EZ > 0 for any compact set 2. 

Thus,if 6’ and 8” are instants such that 0” = 8’ + E (;csr (a)), then the trajec- 

tory 2 (t) does not intersect set M in the interval [t3,’ EI”] . We construct the escape 
control from the known current state by the method indicated earlier. Let us prove that 
trajectory I (t) does not intersect A! in the interval IO, co). Indeed, let T > 0 be 
any finite time. By the assumptions on the parameters of game (1.1) the curve z (t) has 
not left some compact set 2 by this time under any controls. Since we can choose 
E (z) > ex > 0 for z E 2, no more than (T / EZ] changes of control take place in 
time T , i.e. there are oniy a finite number of instants t,, t,, . . ., t, at which the 
choice of escape control changed, In each of +he intervals [ ti, t;+1] the control v (t) 
was chosen such that J: (t) F M. Consequently, 5 (t) ZZ M in the whole interval 
[O, T] , which completes the proof since T was chosen arbitrarily. 

N o t e 1. We relax the requirement F (I, y) > 0 in Assumption 2, replacing it by : 

G (z. Y) = min min max (p, fk (2, y, 11, u) - I (5, y)) > 0 
W-EYE UEIJ UE\ 

Then the theorem’s proof holds with the sole difference that escape is realized in the 
class of measurable functions u (t) with the use of information at instant d both on the 
current position as well as on the control u ftf [5 - 81 , The proof of this fact is analo- 
gous to that of the theorem and uses the result in [13]. 

N o t e 2, Inequality (2.3) can be replaced by the simpler one dim R & k -I- 1, 
since max rank B(x, y)f k + 1 

x, ?I 
4. From the theorem and Note 1 follow a number of corollaries suitable for analyzing 

escape possibilities and for constructing the escape control. We carry out the proof only 
for the cases not assuming information discrimination against the pursuer. The proofs of 
the results in the other case are similar. Let the right-hand side of system (1.1) have the 
form 

f (r (& x (t - z), 24, v) = fl (Lc (t), 5 (t - 7)) + f2 (u, 4 
Corollary I., Let a ~~dime~ional subspace R, R C ~5 and a vector I exist 

such that min max min (p, fs (u, 27) - 1) > U 
EypR Ev VA%u 

( min min max (p, fz (1.4, Y) - I) > 0) 
&@t@Rt‘d OEv 

(4.1) 
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Then escape is possible in game (1. l), realized in the class of piecewise-constant (mea- 
surable) functions u (t). 

PI o of. Let the initial function go (t), - a < t Q 0, be given, where g, (0) E M. 
We choose the element u0 of Y from the condition 

tlpE”il: m&k-P fz (U? v)) =g; (PO, r& ug)) (4.2) 

where PO ES YR and satisfies the system of linear inequalities 

Then 
(PO, go (@f >, 0, (PO, fl (go (O), go (-7)) + E) >, 0 (4.3) 

(PO, fl (go (O)l go f---2)) + p$U(PoY fz I: a, 4) = (PO, fr f&3 (O), go t-t)) -f- 4 + 
min h f8 05 uo) - 4 > 0 
UEU 

because of (4.1) - (4.3). We select a neighborhood of the point (go (0), g, (-r)) of 
radius r so small that the inequality 

(PO> fl (x1 @)) + $@L,(P,, fs (u, uo)) > 0 (4.4) 

is satisfied by continuity. Having chosen a neighborhood ot radius r i 2 of each of the 
point go (0) and go (-.c) , we construct the escape control just as we did in the theo- 

rem’s proof. As a result of integrating system (1.2) with a chosen control u (t) we ob- 

tain trajectory 2 (t) in the interval [O, E (so (+))I, E (go (-1) 5 T. From formula (3.4), 
with due regard to (4.3) and (4.4), we obtain an estimate for the projections of the tra- 
jectory obtained onto the direction of $‘. 

(PO, I (t)) > 0, 0 < t d e (go (*)) 

Let us show that for any state g (.i such that the pair (g (0), g (-7)) belongs to a com- 

pacturn Z from Ezra, we can choose e (g (+)) > &x > 0, where the constant EZ depends 
only on set 2. Because of the way pc was chosen, at any point (x0, Y”) we have (po, 

fl (~01 ff)) + $j fPrJ> f2 &, Do)) > A > 0 

A- min 
*yR 

max min (p, 
GEV U%.EU 

the function fl (x, y) is continuous in all its arguments, Then a number q = rl (A) > U 
exists such that in a neighborhood of the point (x0, Y”) E 2 of radius not less than r) , 
the function in the left-hand side of inequali~ (4.41 wherein the vectors p. and u. have 

been computed from the point (G,, y*) by (4.2) and (4.3) remains nonnegative. 

Since 5 (t) is an absolutely continuous function, the function z (1) = (z (n, x (t - r)) 

is absolutely continuous and, consequently, satisfies in region z + q8 a Lipschitz con- 
dition with a constant R depending on set 2 + r&I. The function z (t) starting from 
any point z. = (so, !i”) GZ 2 does not leave the region 2 -i_ qsl during time q / K and, 

consequently, we can select 
E k (-)) = E (2) > q ,’ k > 0 

for all Z, E Z. The concluding part of the proof repeats the corresponding arguments from 
the theorem’s proof. 

Let the right-hand side of system (1.1) have the form 

f (2 @), 5 (t -T), u, v) = A$ (i) + A, (.gl (1 - z) 4 fz @, 4 
A, and A, are ( n X IZ )-matrices. 

Corollary 2. Let there exist a number k, asubspace R, R C L, R > k + 1 
and a vector 1 such that the sets nA:j, (u, V), i = 0,. . ., k - 2 consist of unique 
points and 
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(4.5) 

Then escape is possible in game (1. l), realized in the class of piecewise-constant (mea- 

surable) functions u (t). 

Proof . Let the Initial function go (t), -T Q t < 0 be given. We select the element 

u. of V from the condition rnz; ;$(p,, A:-r jz(u, v)) = 2; (po, ,4:-l j%(~, 7~~)) (4.6) 

where p. E 1~~ and satisfies the system of linear inequalities 

(Poe go (O))>O (4.7) 

(po, n';'lgo(0)+ i A:-iA,g~)(--)+~4,ij,(u,u))~O, i=O,...,k-2 
j=O 

i-1 

( po, A,” go (0) + 3 A;-j-%gp (- r) + 4 > 0 
j=O 

Here the Al’ji (u, v) are certain vectors since the first hypothesis of Corollary 1 is sa- 

tisfied. Since k + 1 < Y, system (4.7) is solvable relative to po. Then 

( po, Alkgo (0) + ‘i’ Af-j-1f4,gf) (- t) + min (po, Ais1 f%(u, uo)) = 
j=O EU 

(4.8) 

(PO, Alkgo(9))+(po, k$-4:+1A,gf)(- r) +l)+min (PO, &‘jz (u, uo) - I) > 0 
j=O UEU 

because of (4.5)-(4.7). 

The length e (go (.)) of the Interval of constancy for the escape control v. is chosen 
just as in the theorem’s proof with the use of (4.8). Estimate (3.6) can be obtained si- 

milarly. For any state g (.) such that the set (g (s), g (-z), g(l) (- r), . . . ., 

g@-l) (- z)) belongs to compactum z of En (‘+I), we can select e (g (e)) > ez > 0 ; 
this fact is proved similarly to the proof of the theorem and of Corollary 1. The conclud- 

ing part repeats the theorem’s proof. 
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THE GAME PKBLEM ON THE DOLICHOBRACHISTOCHRNE 

PMM Vol.40, N: 6, 1976, pp. 1003-1013 

S. A. CHIGIR’ 

(Moscow) 
(Received November 11, 1975) 

The capture and evasion sets, the players’ optimal strategies and the game va- 
lue determined for the game problem on the dolichobrachistochrone, analysed 
within the framework of a position formalism similar to [l]. Singularities in- 

herent in the game of the minimax-maximin time to contact [l, 21 become 
apparent; they are determined in the given problem by the specific behavior 
of the optimal paths close to the target set. Isaacs [4] examined the gameprob- 
lem on the dolichobrachistochrone, being the game analog of the classical vari- 

ational problem on the brachistochrone [3]. However, as was shown in [5], the 

solution proposed by Isaacs contains erroneous statements. 

1. In the game problem on the dolichobrachistochrone a point m moves in the half- 

plane of z and Y (Y > 0) in accord with the equation 

Z’ = f/y Cos u + w (v + 1) / 2, y’ = J&j sin u + w (v - 1) / 2 (1.1) 

Here w is a positive constant and u and u are control parameters subject to the first and 

second players, respectively, and to the constraints 

o< u\< 2% -1,<v<l (1.2) 

The first player’s aim is the most rapid approach of point m the target set 

M = {p = {z, Y} 1 2 = 0, Y a 0) (1.3) 

being positive part of the ordinate axis. The second player tries to prevent point m from 
hitting onto set M or, at least, to delay it. In the problem statement we assume that point 

m is in the first quadrant at the initial instant. 
In [4] it is stated that for initial points x,, and Y, satisfying the conditions z’. > o and 

0 d YO < 12 the second player can prevent approach to the target set M in spite of any 
efforts of the first player. This statement is justified in [4] in the following manner : in 


